

Specification CAWT722-S

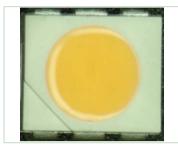
S	SC	CUSTOMER
Drawn	Approval	Approval

Rev. 02

CONTENTS

- 1. Feature & Application
- 2. Absolute Maximum Ratings
- 3. Electro Characteristics
- 4. Optical characteristics
- 5. Color & Binning
- 6. Rank of CAWT722-S
- 7. Outline Dimension
- 8. Packing
- 9. Soldering
- 10. Precaution for use
- 11. Handling of Silicone Resin LEDs
- 12. Reliability Test Item and Condition

Rev. 0 ember 200



CAWT722-S

Description

This surface-mount LED comes in PLCC standard package dimension. It has a substrate made up of a molded plastic reflector sitting on top of a bent lead frame. The die is attached within the reflector cavity and the cavity is encapsulated by epoxy or silicone.

The package design coupled with careful selection of component materials allow these products to perform with high reliability in a larger temperature range -40°C to 100°C. The high reliability feature is crucial to Automotive interior and Indoor ESS.

CAWT722-S

Features

- White colored SMT package.
- Material : InGaN/SiC
- Encapsulating Resin : Silicon Resin
- Suitable for all SMT assembly methods ;
 Suitable for all soldering methods
- RoHS Compliant

Applications

- Interior automotive
- Office Automation,
 Electrical Appliances,
 Industrial Equipment

Rev. 02 ovember 2008

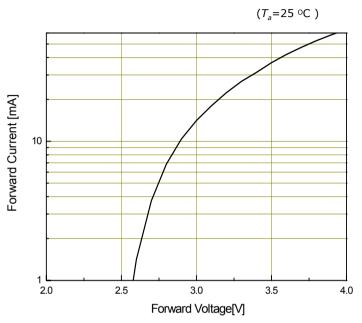
2. Absolute maximum ratings

Parameter	Symbol	Value	Unit
Power Dissipation	P _d	342	mW
Forward Current	I_F	90	mA
Peak Forward Current	I _{FM} *2	100	mA
Reverse Voltage (per die)	V _R	5	V
Operating Temperature	T _{opr}	-40 ~ +85	٥C
Storage Temperature	T _{stg}	-40 ~ +100	٥C

*1 Care is to be taken that power dissipation does not exceed the absolute maximum rating of the product. *2 *IFM* was measured at $T_W \leq 1$ msec of pulse width and D $\leq 1/10$ of duty ratio.

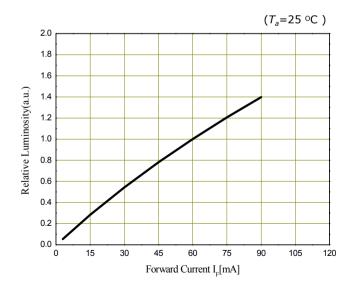
Parameter Symbol Condition Min Unit Тур Max Forward Voltage (per die) V_{F} $I_{F} = 60 \text{ mA}$ 2.9 3.2 3.6 V $V_R = 5V$ Reverse Current (per die) 10 μA I_R Luminance Intensity *1 $I_F = 60 \text{ mA}$ 4500 5500 mcd I_V -Luminance Flux $I_F = 60 \text{ mA}$ 11 13.1 lm Φν _ 2500 4600 Color Temperature CCT $I_{F} = 60 \text{ mA}$ _ Κ 0.3545 0.4970 Х _ Color Coordinate $I_{F} = 60 \text{ mA}$ Y 0.3408 -0.4466 Viewing Angle *2 $I_F = 60 \text{ mA}$ $2\theta_{1/2}$ 120 deg _ _ 57 Optical Efficiency $I_{F} = 60 \text{ mA}$ _ 68 lm/W *П*ор Color Rendering Index Ra $I_{r} = 60 \text{ mA}$ -95 _

3. Electric & Optical characteristics


*1. The luminous intensity IV was measured at the peak of the spatial pattern which may not be aligned with the mechanical axis of the LED package. Luminous Intensity Measurement allowance is $\pm 10\%$ *2. $2\theta/_{2}$ is the off-axis where the luminous intensity is 1/2 of the peak intensity.

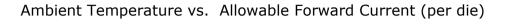
[Note] All measurements were made under the standardized environment of SSC.

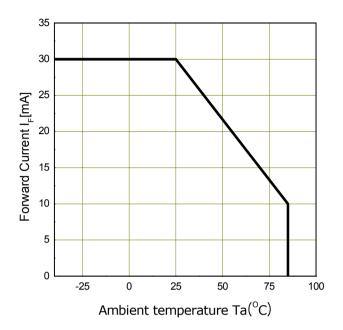
Rev. 02 vember 2008

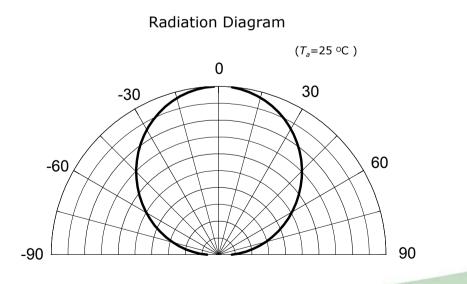


4. Optical characteristics

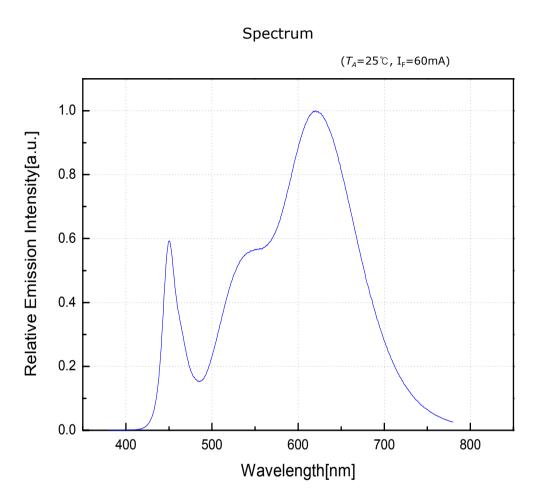
Forward Current vs. Forward Voltage (per die)


Relative Luminous Intensity vs Forward Current




Rev. 02

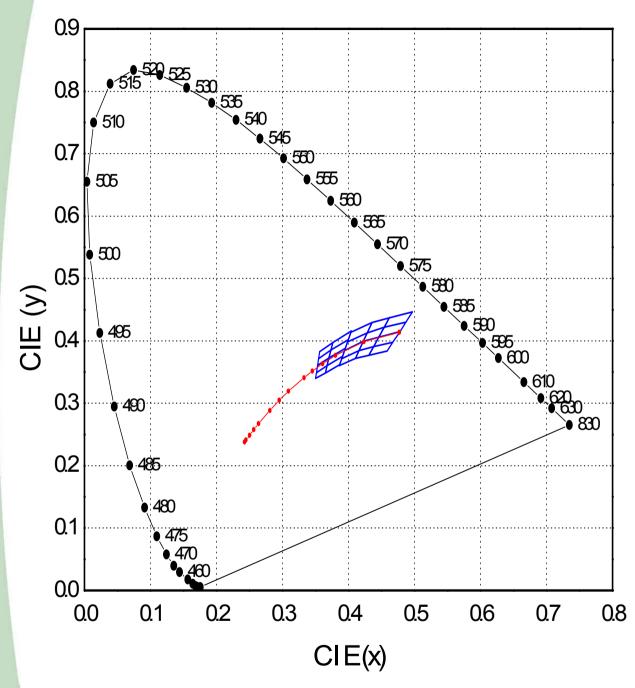
4. Optical characteristics



Rev. 02

November 2008

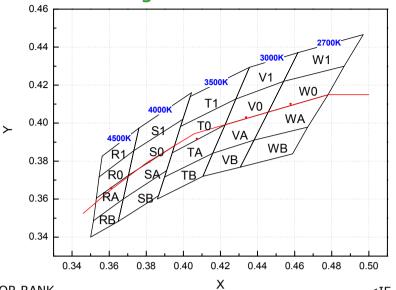
vember 2008


www.ZLED.com SSC-QP-7-07-24 (Rev.00)

SEOUL SEMICONDUCTOR

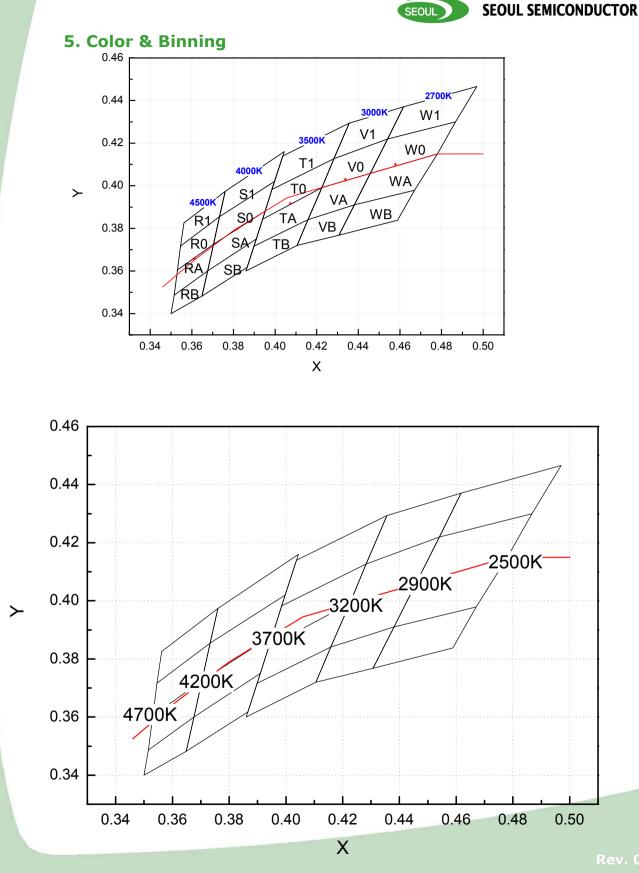
SEOUL

5. Color & Binning



Rev. 02

November 2008


COLOR RANK

<IF=20mA, Ta=25℃>

$\begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				450	00K					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R	В	R	A	R	0	R	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Х	Y	Х	Y	Х	Y	Х	Y		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.3515	0.3487	0.3531	0.3605	0.3546	0.3717	0.3562	0.3826		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.35	0.34	0.3515	0.3487	0.3531	0.3605	0.3546	0.3717		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.3649	0.3482	0.3676	0.36	0.3704	0.3725	0.3733	0.3855		
SB SA SO S1 X Y X Y X Y X Y <td>0.3676</td> <td>0.36</td> <td>0.3704</td> <td>0.3725</td> <td>0.3733</td> <td>0.3855</td> <td>0.376</td> <td>0.3974</td>	0.3676	0.36	0.3704	0.3725	0.3733	0.3855	0.376	0.3974		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4000K									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S	B	S	A	S	0	S	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Х	Y	Х	Y	Х	Y	Х	Y		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.3676	0.36	0.3704	0.3725	0.3733		0.376	0.3974		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.3649	0.3482	0.3676	0.36	0.3704	0.3725	0.3733	0.3855		
TB TA T0 T1 X Y <td>0.3866</td> <td>0.3618</td> <td>0.391</td> <td>0.375</td> <td>0.3952</td> <td>0.3881</td> <td>0.3997</td> <td></td>	0.3866	0.3618	0.391	0.375	0.3952	0.3881	0.3997			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.391	0.375	0.3952			0.402	0.4044	0.416		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3500K								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Т									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Х		Х		Х	Y				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.3898	0.3716	0.394	0.3843	0.3985	0.3983	0.4037	0.414		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.386		0.3898	0.3716	0.394	0.3843	0.3985	0.3983		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.4106	0.372	0.4158	0.3841	0.4225	0.3991	0.4283	0.4127		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.4158	0.3841	0.4225			0.4127	0.4356	0.4294		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				300						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-		-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4158		0.4225	0.3991	0.4283			0.4294		
			0.4158							
2700K WB WA W0 W1 X Y X Y X Y 0.4381 0.391 0.4457 0.4058 0.4541 0.422 0.4617 0.4371 0.4307 0.3768 0.4381 0.391 0.4457 0.4058 0.4541 0.422										
WB WA WO W1 X Y X Y X Y Y 0.4381 0.391 0.4457 0.4058 0.4541 0.422 0.4617 0.4371 0.4307 0.3768 0.4381 0.391 0.4457 0.4058 0.4541 0.422	0.4381	0.391	0.4457			0.422	0.4617	0.4371		
X Y X Y X Y X Y 0.4381 0.391 0.4457 0.4058 0.4541 0.422 0.4617 0.4371 0.4307 0.3768 0.4381 0.391 0.4457 0.4058 0.4541 0.422										
0.4381 0.391 0.4457 0.4058 0.4541 0.422 0.4617 0.4371 0.4307 0.3768 0.4381 0.391 0.4457 0.4058 0.4541 0.422										
0.4307 0.3768 0.4381 0.391 0.4457 0.4058 0.4541 0.422		-		-				-		
0.4588 0.3838 0.467 0.3979 0.478 0.415 0.4867 0.43										
					and the second se					
0.467 0.3979 0.478 0.415 0.4867 0.43 0.497 0.4466 Measurement Uncertainty of the Color Coordinates : ± 0.01						0.43	0.497	0.4466		

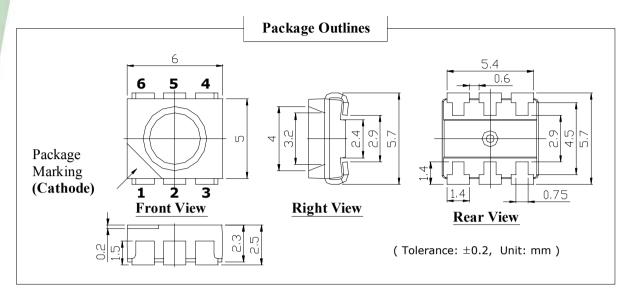
* Measurement Uncertainty of the Color Coordinates : \pm 0.01 *The single bin is not acceptable in the same group of CCT. (At least, 2 bins required to take when ordering) **Rev. 02**

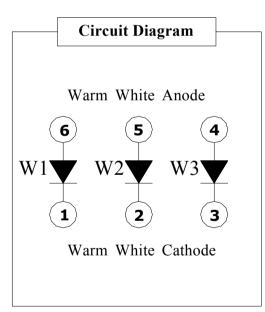
November 2008

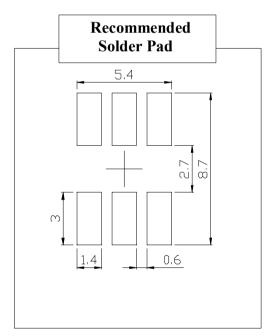
November 2008

6. Rank of CAWT722-S

	Rank Name Table										
			>	X ₁ X		, 2	X ₃				
			Ι	V	C	[E	VI	=			
Intens	sity value	e[mcd]				7			■ Forw	ard Volta	ige[V]
Rank	Color MIN	r : R,S MAX			v				Rank Name	MIN	MAX
Name			_	CIE (Color Rank)				Y3	2.9	3.0	
L8	3800	4500		4500K		nk Na 3500к		2700K	Z1	3.0	3.1
M5	4500	5500	_	R1	S1	T1	V1	W1	Z2	3.1	3.2
N5	5500	6800		R0	S0	то	VO	WO	Z3	3.2	3.3
			_	RA	SA	ТА	VO	WA	A1	3.3	3.4
Rank	Color :	т, v, w	V						1		
Name	MIN	MAX		RB	SB	ТВ	VB	WB	A2	3.4	3.5
L5	3500	4200)						A3	3.5	3.6
M2	4200	5100)								
N1	5100	6300						Avai	lable Ra	nk	


SEOUL

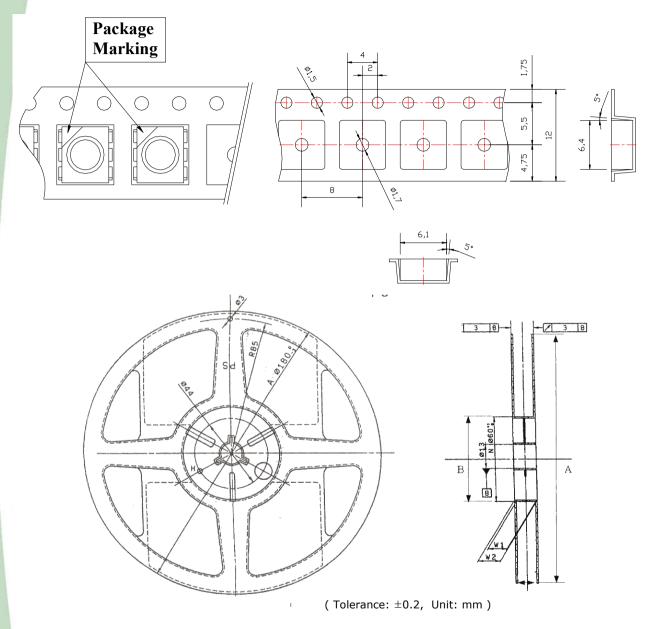

[Note] All measurements were made under the standardized environment of SSC. In order to ensure availability, single color rank will not be orderable. SEOUL SEMICONDUCTOR


Rev. 02

7.Outline Dimension

* MATERIALS

PARTS	MATERIALS
Package	Heat-Resistant Polymer
Encapsulating Resin	Silicon Resin
Electrodes	Ag Plating Copper Alloy


Rev. 02

November 2008

SEOUL

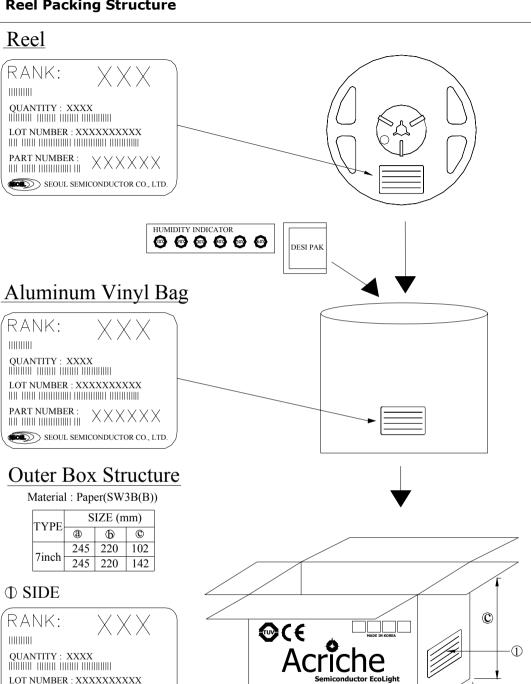
SEOUL SEMICONDUCTOR

1)Quantity: 700pcs/Reel

2)Cumulative Tolerance : Cumulative Tolerance/10 pitches to be ± 0.2 mm 3)Adhesion Strength of Cover Tape : Adhesion strength to be 0.1-0.7N when the cover tape is turned off from the carrier tape at the angle of 10 to the carrier tape 4)Package : P/N, Manufacturing data Code No. and quantity to be indicated on a damp proof Package

Rev. 02

November 2008


Reel Packing Structure

Reel

SEOUL SEMICONDUCTOR CO., LTD.

XXXXXX

PART NUMBER :

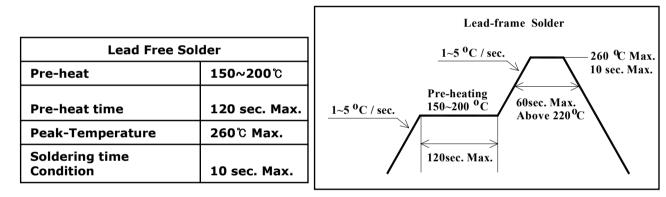
C RoHS

ð

SSC-QP-7-07-24 (Rev.00)

h

SEOUL SEMICONDUCTOR


SEOUL

9. Soldering

(1) Lead Solder

		Lead Solder
Lead Sole	der	$2.5 \sim 5^{\circ} \text{ C} / \text{sec.}$ 240 °C Max.
Pre-heat	120~150 ℃	10 sec. Max.
Pre-heat time	120 sec. Max.	Pre-heating 120~150°C 60sec. Max
Peak-Temperature	240℃ Max.	2.5~5 C/sec. 120~150 °C Above 200 °C
Soldering time Condition	10 sec. Max.	120sec. Max.

(2) Lead-Free Solder

(3) Hand Soldering conditions

Do not exceed 4 seconds at maximum 315°C under soldering iron.

(4) The encapsulated material of the LEDs is silicone.

Precautions should be taken to avoid the strong pressure on the encapsulated part.

So when using the chip mounter, the picking up nozzle that does not affect the silicone resign should be used.

Note : In case that the soldered products are reused in soldering process, we don't guarantee the products.

Rev. 02

November 2008

10. Precaution for use

(1) Storage

In order to avoid the absorption of moisture, it is recommended to store in a dry box (or a desiccator) with a desiccant. Otherwise, to store them in the following environment is recommended.

SEOUL

Temperature : 5°C ~30°C Humidity : maximum 65%RH

(2) Attention after open.

LED is correspond to SMD, when LED be soldered dip, interfacial separation may affect the light transmission efficiency, causing the light intensity to drop. Attention in followed; a. After opened and mounted the soldering shall be quickly.

b. Keeping of a fraction

Temperature : $5 \sim 40^{\circ}$ C Humidity : less than 30%

(3) In the case of more than 1 week passed after opening or change color of indicator on desiccant, components shall be dried 10-12hr. at $60\pm5^{\circ}$ C.

(4) Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.

(5) Quick cooling shall be avoided.

(6) Components shall not be mounted on warped direction of PCB.

(7) Anti radioactive ray design is not considered for the products.

(8) This device should not be used in any type of fluid such as water, oil, organic solvent etc. When washing is required, IPA should be used.

(9) When the LEDs are illuminating, operating current should be decided after considering the ambient maximum temperature.

(10) LEDs must be stored to maintain a clean atmosphere. If the LEDs are stored for 3 months or more after being shipped from SSC, a sealed container with a nitrogen atmosphere should be used for storage.

(11) The LEDs must be soldered within seven days after opening the moisture-proof packing.

(12) Repack unused products with anti-moisture packing, fold to close any opening and then store in a dry place.

(13) The appearance and specifications of the product may be modified for improvement without notice.

Rev. 02

www.ZLED.com SSC-QP-7-07-24 (Rev.00)

SEOUL SEMICONDUCTOR

11. Handling of Silicone Resin LEDs

(1) During processing, mechanical stress on the surface should be minimized as much as possible. Sharp objects of all types should not be used to pierce the sealing compound.

(2) In general, LEDs should only be handled from the side. By the way, this also applies to LEDs without a silicone sealant, since the surface can also become scratched.

(3) When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the surface of the resin must be prevented.

This is assured by choosing a pick and place nozzle which is larger than the LED's reflector area.

(4) Silicone differs from materials conventionally used for the manufacturing of LEDs. These conditions must be considered during the handling of such devices. Compared to standard encapsulants, silicone is generally softer, and the surface is more likely to attract dust.

As mentioned previously, the increased sensitivity to dust requires special care during processing. In cases where a minimal level of dirt and dust particles cannot be guaranteed, a suitable cleaning solution must be applied to the surface after the soldering of components.

(5) SSC suggests using isopropyl alcohol for cleaning. In case other solvents are used, it must be assured that these solvents do not dissolve the package or resin. Ultrasonic cleaning is not recommended. Ultrasonic cleaning may cause damage to the LED.

Rev. 02

12. Reliability Test Item and Condition

Item	Reference	Test Condition	Duration / Cycle	Number of Damage
Thermal Shock	EIAJ ED- 4701	$T_a = -40^{\circ}$ C (30MIN) ~ 100°C (30MIN)	100 Cycle	0/22
Temperature Cycle	EIAJ ED- 4701	$T_a = -40^{\circ}$ C (30MIN) ~ 25°C (5MIN) ~ 100°C (30MIN) ~ 25°C (5MIN)	100 Cycle	0/22
High Temperature Storage	EIAJ ED- 4701	<i>T_a</i> =100°C	1000 Hours	0/22
High Temperature High Humidity Storage	EIAJ ED- 4701	<i>T_a</i> =85⁰C, RH=85%	1000 Hours	0/22
Low Temperature Storage	EIAJ ED- 4701	<i>T_a</i> =-40°C	1000 Hours	0/22
Operating Endurance Test	Internal Reference	<i>T_a</i> =25°C, <i>I_F</i> =20mA	1000 Hours	0/22
High Temperature High Humidity Life Test	Internal Reference	<i>T_a</i> =85°C, RH=85%, <i>I_F</i> =15mA	300 Hours	0/22
High Temperature Life Test	Internal Reference	<i>T_a</i> =85°C, <i>I_F</i> =20mA	500 Hours	0/22
Low Temperature Life Test	Internal Reference	<i>T_a</i> =-40°C, <i>I_F</i> =20mA	1000 Hours	0/22
ESD(HBM)	MIL-STD- 883D	1KV at 1.5kΩ; 100pF	3 Time	0/22

Criteria for Judging the Damage

Itom	Symbol	Condition	Criteria for Judgement		
Item	Symbol	Condition	MIN	MAX	
Forward Voltage	V_F	<i>I_F</i> =20mA	-	$\text{USL}^{*1} \times 1.2$	
Reverse Current	I_R	$V_R = 5V$	-	$USL^{*1} \times 2.0$	
Luminous Intensity	I_V	<i>I_F</i> =20mA	$LSL^{*2} \times 0.5$	_	

Note : *1 USL : Upper Standard Level *2 LSL : Lower Standard Level

Rev. 02

November 2008