

Specification CWT722-S

S	SC	CUSTOMER
Drawn	Approval	Approval

Rev. 02 October 2008 www.ZLED.com

CONTENTS

- 1. Feature & Application
- 2. Absolute Maximum Ratings
- 3. Electro Characteristics
- 4. Optical characteristics
- 5. Color & Binning
- 6. Rank of CWT722-S
- 7. Outline Dimension
- 8. Packing
- 9. Soldering
- 10. Precaution for use
- 11. Handling of Silicone Resin LEDs
- 12. Reliability Test Item and Condition

echnical Data Sheet

Rev. 02 October 2008 www.ZLED.com

CWT722-S

Description

This surface-mount LED comes in PLCC standard package dimension. It has a substrate made up of a molded plastic reflector sitting on top of a bent lead frame. The die is attached within the reflector cavity and the cavity is encapsulated by epoxy or silicone.

The package design coupled with careful selection of component materials allow these products to perform with high reliability in a larger temperature range -40° C to 100° C. The high reliability feature is crucial to Automotive interior and Indoor ESS.

CWT722-S

Features

- White colored SMT package.
- Material : InGaN/SiC
- Encapsulating Resin : Silicon Resin
- Suitable for all SMT assembly methods ;
 Suitable for all soldering methods
- RoHS Compliant

Applications

- Interior automotive
- Office Automation,
 Electrical Appliances,
 Industrial Equipment

Rev. 02 October 2008 www.ZLED.com

2. Absolute maximum ratings

Parameter	Symbol	Value	Unit
Power Dissipation	P _d	342	mW
Forward Current	I _F	90	mA
Peak Forward Current	I _{FM} *2	100	mA
Reverse Voltage (per die)	V _R	5	V
Operating Temperature	T _{opr}	-40 ~ +85	٥C
Storage Temperature	T _{stg}	-40 ~ +100	٥C

*1 Care is to be taken that power dissipation does not exceed the absolute maximum rating of the product. *2 *IFM* was measured at $T_W \leq 1$ msec of pulse width and D $\leq 1/10$ of duty ratio.

3. Electric & Optical characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Forward Voltage (per die)	V _F	<i>I_F</i> =60 mA	2.9	3.2	3.6	V
Reverse Current (per die)	I_R	$V_R = 5V$	-	-	10	μA
Luminance Intensity *1	I_V	<i>I_F</i> =60 mA	-	4600	5100	mcd
Luminance Flux	Φ _V	<i>I_F</i> =60 mA	-	12.5	13.6	lm
Color Temperature	ССТ	<i>I_F</i> =60 mA	4700	-	10000	К
Color Coordinato	Х	I = 60 mA	0.279	-	0.3531	
	Y	$I_F = 60 \text{ IIIA}$	0.297	-	0.3605	-
Viewing Angle *2	$2\theta_{y_2}$	<i>I_F</i> =60 mA	-	120	-	deg
Optical Efficiency	Ŋ _{op}	<i>I_F</i> =60 mA	-	65	70	lm/W
Color Rendering Index	Ra	<i>I_F</i> =60 mA	-	92	-	-

*1. The luminous intensity IV was measured at the peak of the spatial pattern which may not be aligned with the mechanical axis of the LED package. Luminous Intensity Measurement allowance is $\pm 10\%$ *2. $2\theta/_{2}$ is the off-axis where the luminous intensity is 1/2 of the peak intensity.

[Note] All measurements were made under the standardized environment of SSC.

Rev. 02 October 2008 www.ZLED.com

4. Optical characteristics

Forward Current vs. Forward Voltage (per die)

Relative Luminous Intensity vs Forward Current

Rev. 02 October 2008 www.ZLED.com

4. Optical characteristics

Ambient Temperature vs. Allowable Forward Current (per die)

Radiation Diagram

Rev. 02 October 2008 www.ZLED.com

Rev. 02 October 2008 www.ZLED.com

SEOUL SEMICONDUCTOR

SEOUL

5. Color & Binning

Χ

Rev. 02 October 2008

SEOUL SEMICONDUCTOR

SEOUL

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		LOR RANK	OLOR RANK		<ii< th=""><th>==20mA, Ta</th><th>a=25℃></th></ii<>	==20mA, Ta	a=25℃>	
$\begin{array}{c c c c c c c c c } b1 & b2 & c1 & c2 \\ \hline 0.2860 & 0.2820 & 0.2790 & 0.2970 & 0.2950 & 0.2950 & 0.2890 & 0.3120 \\ \hline 0.2920 & 0.2700 & 0.2860 & 0.2820 & 0.3000 & 0.2810 & 0.2950 & 0.2950 \\ \hline 0.3000 & 0.2810 & 0.2950 & 0.2950 & 0.3104 & 0.2940 & 0.3065 & 0.3104 \\ \hline 0.2950 & 0.2950 & 0.2890 & 0.3120 & 0.3065 & 0.3104 & 0.3030 & 0.3290 \\ \hline \hline & & & & & & & & & & & & & & & & &$	9000K				7500)K		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b	b1	b1 b	2	С	1	С	2
0.2920 0.2700 0.2860 0.2820 0.3000 0.2810 0.2950 0.2950 0.3000 0.2810 0.2950 0.2950 0.3104 0.2940 0.3065 0.3104 0.2950 0.2950 0.3120 0.3065 0.3104 0.3030 0.3290 0.2950 0.2950 0.2890 0.3120 0.3065 0.3104 0.3030 0.3290 0.2950 0.2950 0.2890 0.3120 0.3065 0.3104 0.3030 0.3290 d1 d2 e1 e2 0.3065 0.3104 0.3030 0.3290 0.3171 0.3240 0.3150 0.3420 0.3104 0.2940 0.3065 0.3104 0.3190 0.3052 0.3171 0.3240	0.2860	0.2820	0.2820 0.2790	0.2970	0.2950	0.2950	0.2890	0.3120
0.3000 0.2810 0.2950 0.3104 0.2940 0.3065 0.3104 0.2950 0.2950 0.2890 0.3120 0.3065 0.3104 0.3030 0.3290 6700K 6000K d1 d2 e1 e2 0.3065 0.3104 0.3050 0.3420 0.3420 0.3065 0.3104 0.3030 0.3290 0.3171 0.3240 0.3150 0.3420 0.3104 0.2940 0.3065 0.3104 0.3190 0.3052 0.3171 0.3240	0.2920	0.2700	0.2700 0.2860	0.2820	0.3000	0.2810	0.2950	0.2950
0.2950 0.2950 0.2890 0.3120 0.3065 0.3104 0.3030 0.3290 6700K d1 d2 e1 e2 0.3065 0.3104 0.3030 0.3290 0.3171 0.3240 0.3150 0.3420 0.3104 0.2940 0.3065 0.3104 0.3190 0.3052 0.3171 0.3240	0.3000	0.2810	0 0.2810 0.2950	0.2950	0.3104	0.2940	0.3065	0.3104
6700K 6000K d1 d2 e1 e2 0.3065 0.3104 0.3030 0.3290 0.3171 0.3240 0.3150 0.3420 0.3104 0.2940 0.3065 0.3104 0.3190 0.3052 0.3171 0.3240	0.2950	0.2950	0.2950 0.2890	0.3120	0.3065	0.3104	0.3030	0.3290
d1 d2 e1 e2 0.3065 0.3104 0.3030 0.3290 0.3171 0.3240 0.3150 0.3420 0.3104 0.2940 0.3065 0.3104 0.3190 0.3052 0.3171 0.3240	6700K			6000)K			
0.3065 0.3104 0.3030 0.3290 0.3171 0.3240 0.3150 0.3420 0.3104 0.2940 0.3065 0.3104 0.3190 0.3052 0.3171 0.3240	d	d1	d1 d	2	е	1	е	2
0.3104 0.2940 0.3065 0.3104 0.3190 0.3052 0.3171 0.3240	0.3065	0.3104	65 0.3104 0.3030	0.3290	0.3171	0.3240	0.3150	0.3420
	0.3104	0.2940	04 0.2940 0.3065	0.3104	0.3190	0.3052	0.3171	0.3240
0.3190 0.3052 0.3171 0.3240 0.3286 0.3168 0.3280 0.3372	0.3190	0.3052	0 0.3052 0.3171	0.3240	0.3286	0.3168	0.3280	0.3372
0.3171 0.3240 0.3150 0.3420 0.3280 0.3372 0.3277 0.3553	0.3171	0.3240	71 0.3240 0.3150	0.3420	0.3280	0.3372	0.3277	0.3553
5500K 5000K	5500K			50	00K			
f1 f2 g1 g2	f	f1	f1 f	2	g	1	g	2
0.3280 0.3372 0.3277 0.3553 0.3400 0.3500 0.3400 0.3680	0.3280	0.3372	0.3372 0.3277	0.3553	0.3400	0.3500	0.3400	0.3680
0.3286 0.3168 0.3280 0.3372 0.3395 0.3292 0.3400 0.3500	0.3286	0.3168	86 0.3168 0.3280	0.3372	0.3395	0.3292	0.3400	0.3500
0.3395 0.3292 0.3400 0.3500 0.3500 0.3400 0.3531 0.3605	0.3395	0.3292	0.3292 0.3400	0.3500	0.3500	0.3400	0.3531	0.3605
0.3400 0.3500 0.3400 0.3680 0.3531 0.3605 0.3562 0.3826	0.3400	0.3500	0 0.3500 0.3400	0.3680	0.3531	0.3605	0.3562	0.3826

* Measurement Uncertainty of the Color Coordinates : \pm 0.01

Rev. 02 October 2008 www.ZLED.com

Technical Data Shee

Rev. 02 October 2008 www.ZLED.com

Document No. : SSC-QP-7-07-24 (Rev.00)

SEOUL SEMICONDUCTOR

6. Rank of CWT722-S

	Rank Nar	me Table	
	X ₁	X ₂	X ₃
	IV	CIE	VF
mcd]			

Intensity value[mcd]

Rank Name	MIN	MAX
L2	3200	4200
M2	4200	5100
N1	5100	6200
P2	6200	7600

CIE (Color Rank)				
	Rank Name			
9000K	b1	b2		
7500K	c1	c2		
6700K	d1	d2		
6000K	e1	e2		
5500K	f1	f2		
5000K	g1	g2		

	Forward	Voltage	[\/]
_	i oiwaiu	vonage	1 1 1

Rank Name	MIN	MAX
Y3	2.9	3.0
Z1	3.0	3.1
Z2	3.1	3.2
Z3	3.2	3.3
A1	3.3	3.4
A2	3.4	3.5
A3	3.5	3.6

Available Rank

[Note] All measurements were made under the standardized environment of SSC. In order to ensure availability, single color rank will not be orderable.

> Rev. 02 October 2008 www.ZLED.com

7.Outline Dimension

*** MATERIALS**

PARTS	MATERIALS
Package	Heat-Resistant Polymer
Encapsulating Resin	Silicon Resin
Electrodes	Ag Plating Copper Alloy

Rev. 02 October 2008 ww.ZLED.com

SEOUL SEMICONDUCTOR

8. Packing

1)Quantity : 700pcs/Reel

2)Cumulative Tolerance : Cumulative Tolerance/10 pitches to be ± 0.2 mm 3)Adhesion Strength of Cover Tape : Adhesion strength to be 0.1-0.7N when the cover tape is turned off from the carrier tape at the angle of 10 to the carrier tape 4)Package : P/N, Manufacturing data Code No. and quantity to be indicated on a damp proof Package

> Rev. 02 October 2008 www.ZLED.com

Reel Packing Structure

Rev. 02 October 2008 www.ZLED.com

9.Soldering

(1) Lead Solder

Lead Solder		
120~150℃		
120 sec. Max.		
240℃ Max.		
10 sec. Max.		

SEOUL

(2) Lead-Free Solder

Lead Free Solder		
Pre-heat	150~200 ℃	
Pre-heat time	120 sec. Max.	
Peak-Temperature	260℃ Max.	
Soldering time Condition	10 sec. Max.	

(3) Hand Soldering conditions Do not exceed 4 seconds at maximum 315°C under soldering iron.

(4) The encapsulated material of the LEDs is silicone.
 Precautions should be taken to avoid the strong pressure on the encapsulated part.
 So when using the chip mounter, the picking up nozzle that does not affect the silicone resign should be used.

Note : In case that the soldered products are reused in soldering process, we don't guarantee the products.

Rev. 02 October 2008 www.ZLED.com

10. Precaution for use

(1) Storage

In order to avoid the absorption of moisture, it is recommended to store in a dry box (or a desiccator) with a desiccant. Otherwise, to store them in the following environment is recommended.

SEOUL

Temperature : 5°C ~30°C Humidity : maximum 65%RH

(2) Attention after open.

LED is correspond to SMD, when LED be soldered dip, interfacial separation may affect the light transmission efficiency, causing the light intensity to drop. Attention in followed; a. After opened and mounted the soldering shall be guickly.

b. Keeping of a fraction

Temperature : 5 ~ 40°C Humidity : less than 30%

(3) In the case of more than 1 week passed after opening or change color of indicator on desiccant, components shall be dried 10-12hr. at $60\pm5^{\circ}$ C.

(4) Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.

(5) Quick cooling shall be avoided.

(6) Components shall not be mounted on warped direction of PCB.

(7) Anti radioactive ray design is not considered for the products.

(8) This device should not be used in any type of fluid such as water, oil, organic solvent etc. When washing is required, IPA should be used.

(9) When the LEDs are illuminating, operating current should be decided after considering the ambient maximum temperature.

(10) LEDs must be stored to maintain a clean atmosphere. If the LEDs are stored for 3 months or more after being shipped from SSC, a sealed container with a nitrogen atmosphere should be used for storage.

(11) The LEDs must be soldered within seven days after opening the moisture-proof packing.

(12) Repack unused products with anti-moisture packing, fold to close any opening and then store in a dry place.

(13) The appearance and specifications of the product may be modified for improvement without notice.

Rev. 02 October 2008 www.ZLED.com

SEOUL SEMICONDUCTOR

11. Handling of Silicone Resin LEDs

(1) During processing, mechanical stress on the surface should be minimized as much as possible. Sharp objects of all types should not be used to pierce the sealing compound.

(2) In general, LEDs should only be handled from the side. By the way, this also applies to LEDs without a silicone sealant, since the surface can also become scratched.

(3) When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the surface of the resin must be prevented.

This is assured by choosing a pick and place nozzle which is larger than the LED's reflector area.

(4) Silicone differs from materials conventionally used for the manufacturing of LEDs. These conditions must be considered during the handling of such devices. Compared to standard encapsulants, silicone is generally softer, and the surface is more likely to attract dust.

As mentioned previously, the increased sensitivity to dust requires special care during processing. In cases where a minimal level of dirt and dust particles cannot be guaranteed, a suitable cleaning solution must be applied to the surface after the soldering of components.

(5) SSC suggests using isopropyl alcohol for cleaning. In case other solvents are used, it must be assured that these solvents do not dissolve the package or resin. Ultrasonic cleaning is not recommended. Ultrasonic cleaning may cause damage to the LED.

Rev. 02 October 2008 www.ZLED.com

12. Reliability Test Item and Condition

Item	Reference	Test Condition	Duration / Cycle	Number of Damage
Thermal Shock	EIAJ ED- 4701	$T_a = -40^{\circ}\text{C} (30\text{MIN}) \sim 100^{\circ}\text{C}$ 100 (30MIN) Cycl		0/22
Temperature Cycle	EIAJ ED- 4701	<i>T_a</i> =-40°C (30MIN) ~ 25°C (5MIN) ~ 100°C (30MIN) ~ 25°C (5MIN)	100 Cycle	0/22
High Temperature Storage	EIAJ ED- 4701	<i>T_a</i> =100°C	1000 Hours	0/22
High Temperature High Humidity Storage	EIAJ ED- 4701	<i>T_a</i> =85⁰C, RH=85%	1000 Hours	0/22
Low Temperature Storage	EIAJ ED- 4701	<i>T_a</i> =-40°C	1000 Hours	0/22
Operating Endurance Test	Internal Reference	<i>T_a</i> =25°C, <i>I_F</i> =20mA	1000 Hours	0/22
High Temperature High Humidity Life Test	Internal Reference	<i>T_a</i> =85ºC, RH=85%, <i>I_F</i> =15mA	300 Hours	0/22
High Temperature Life Test	Internal Reference	<i>T_a</i> =85°C, <i>I_F</i> =20mA	500 Hours	0/22
Low Temperature Life Test	Internal Reference	<i>T_a</i> =-40°C, <i>I_F</i> =20mA	1000 Hours	0/22
ESD(HBM)	MIL-STD- 883D	1KV at 1.5kΩ; 100pF 3 Tin		0/22

Criteria for Judging the Damage

Itom	Symbol	Condition	Criteria for Judgement	
Item			MIN	MAX
Forward Voltage	V _F	<i>I_F</i> =20mA	-	$\text{USL}^{*1} \times 1.2$
Reverse Current	I_R	<i>V_R</i> =5V	-	$\text{USL}^{*1} \times 2.0$
Luminous Intensity	I_V	<i>I_F</i> =20mA	$LSL^{*2} \times 0.5$	-

Note : *1 USL : Upper Standard Level *2 LSL : Lower Standard Level

Rev. 02 October 2008 www.ZLED.com